5.5 Multiple Eigenvalue Solutions

In this section we discuss the situation when the characteristic equation

$$
\begin{equation*}
|\mathbf{A}-\lambda \mathbf{I}|=0 \tag{1}
\end{equation*}
$$

does not have n distinct roots, and thus has at least one repeated root.
An eigenvalue is of multiplicity k if it is a k-fold root of Eq. (1).

1. Complete Eigenvalues

- We call an eigenvalue of multiplicity k complete if it has k linearly independent associated eigenvectors.
- If every eigenvalue of the matrix \mathbf{A} is complete, then - because eigenvectors associated with different eigenvalues are linearly independent-it follows that \mathbf{A} does have a complete set of n linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ associated with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (each repeated with its multiplicity).
- In this case a general solution of Eq. (1) is still given by the usual combination

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Example 1 (An example of a complete eigenvalue)
Find the general solution of the systems in the following problem.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
2 & 0 & 0 \tag{1}\\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right] \mathbf{x}
$$

ANS: The characteristic equation of the coefficient matrix A is

$$
|A-\lambda I|=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
-7 & 9-\lambda & 7 \\
0 & 0 & 2-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
9-\lambda & 7 \\
0 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}(9-\lambda)=0
$$

Thus $\lambda=2,2,9$.

- Case $\lambda_{1}=2$. We solve $\left(A-\lambda_{1} I\right) \mathbf{v}=\mathbf{0}$.

That is, $\left(A-\lambda_{1} I\right) \vec{v}=\left[\begin{array}{ccc}0 & 0 & 0 \\ -7 & 7 & 7 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-a+b+c=0$

- If $c=0,-a+b=0$.

We can take $a=b=1$. Then $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector to $\lambda_{1}=2$.

- If $b=0$, then $-a+c=0$.

We can take $a=c=1$. Then $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is another eigenvector to $\lambda_{1}=2$.
Note \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

- Case $\lambda_{2}=9$. We solve

$$
(A-9 I) \mathbf{v}_{3}=\left[\begin{array}{ccc}
-7 & 0 & 0 \tag{2}\\
-7 & 0 & 7 \\
0 & 0 & -7
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$\Rightarrow\left\{\begin{array}{l}a=0 \\ a+c=0 . \\ c=0\end{array}\right.$.
Let $b=1$. Then $\mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is an eigenvector corresponds to $\lambda_{2}=9$.
Then the general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \tag{3}\\
1 \\
0
\end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] e^{2 t}+c_{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{4 t}
$$

2. Defective Eigenvalues

ii.e. λ has less than k. linearly

- An eigenvalue λ of multiplicity $k>1$ is called defective if it is not complete. independent eigenvectors)
- If the eigenvalues of the $n \times n$ matrix \mathbf{A} are not all complete, then the eigenvalue method will prbduce fewer than the needed n linearly independent solutions of the system $\mathbf{x}^{\prime}=\mathbf{A x}$.
- An example of this is the following Example 2.
- The defective eigenvalue $\lambda_{1}=5$ in Example 2 has multiplicity $k=2$, but it has only 1 associated eigenvector.

The Case of Multiplicity $k=2$

Remark: The method of finding the solutions is summarized in the Algorithm Defective Multiplicity 2 Eigenvalues. The following steps explain why this algorithm works.

- Let us consider the case $k=2$, and suppose that we have found (as in Example 2) that there is only a single eigenvector \mathbf{v}_{1} associated with the defective eigenvalue λ.
- Then at this point we have found only the single solution $\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda t}$ of $\mathbf{x}^{\prime}=\mathbf{A x}$.

Recall when solving $a x^{\prime \prime}+b x^{\prime}+c x=0$.
If $a r^{2}+b r+c=0$ has repeated roots. Then two linearly independent solutions are $e^{r t}$, $t e^{r t}$

- By analogy with the case of a repeated characteristic root for a single linear differential equation, we might hope to find a second solution of the form

$$
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{2} t\right) e^{\lambda t}=\mathbf{v}_{2} t e^{\lambda t}
$$

- When we substitute $\mathbf{x}=\mathbf{v}_{2} t e^{\lambda t}$ in $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, we get the equation

$$
\mathbf{v}_{2} e^{\lambda t}+\lambda \mathbf{v}_{2} t e^{\lambda t}=\mathbf{A} \mathbf{v}_{2} t e^{\lambda t}
$$

- But because the coefficients of both $e^{\lambda t}$ and $t e^{\lambda t}$ must balance, it follows that $\mathbf{v}_{2}=\mathbf{0}$, and hence that $\mathbf{x}_{2}(t) \equiv \mathbf{0}$.
- This means that - contrary to our hope - the system $\mathbf{x}^{\prime}=\mathbf{A x}$ does not have a nontrivial solution of the form we assumed.
- Let us extend our idea slightly and replace $\mathbf{v}_{2} t$ with $\mathbf{v}_{1} t+\mathbf{v}_{2}$.
- Thus we explore the possibility of a second solution of the form

$$
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t}
$$

where \mathbf{v}_{1} and \mathbf{v}_{2} are nonzero constant vectors.

- When we substitute $\mathbf{x}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t}$ in $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, we get the equation

$$
\underline{\mathbf{v}}_{1} e^{\lambda t}+\underline{\lambda \mathbf{v}_{1} t e^{\lambda t}}+\underline{\lambda \mathbf{v}_{2}} e^{\lambda t}=\underline{\mathbf{A} \mathbf{v}_{1} t e^{\lambda t}}+\underline{\underline{\mathbf{A} \mathbf{v}_{2}} e^{\lambda t}}
$$

- We equate coefficients of $e^{\lambda t}$ and $t e^{\lambda t}$ here, and thereby obtain the two equations

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{1}=\mathbf{0} \quad \text { and } \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1}
$$

that the vectors \mathbf{v}_{1} and \mathbf{v}_{2} must satisfy in order for

$$
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t}
$$

to give a solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

- Note that the first of these two equations merely confirms that \mathbf{v}_{1} is an eigenvector of \mathbf{A} associated with the eigenvalue λ.
- Then the second equation says that the vector \mathbf{v}_{2} satisfies

$$
(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=(\mathbf{A}-\lambda \mathbf{I})\left[(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}\right]=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{1}=\mathbf{0}
$$

- It follows that, in order to solve the two equations simultaneously, it suffices to find a solution \mathbf{v}_{2} of the single equation $(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=\mathbf{0}$ such that the resulting vector $\mathbf{v}_{1}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}$ is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues

1. First find nonzero solution \mathbf{v}_{2} of the equation

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=\mathbf{0} \tag{4}
\end{equation*}
$$

such that

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1} \tag{5}
\end{equation*}
$$

is nonzero, and therefore is an eigenvector \mathbf{v}_{1} associated with λ.
2. Then form the two independent solutions

$$
\begin{equation*}
\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda t} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t} \tag{7}
\end{equation*}
$$

of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ corresponding to λ.
Rmk: (1) By Thm 3 in $\S 5.1$, we need to find $\vec{x}_{1}(t)$ and $\vec{x}_{2}(-1)$ that are linearly independent.
(2). Note the above algorithm produces two solutions \vec{x}_{1}, \vec{x}_{2} that linear ll independent.
(3). Note \vec{V}_{1}, \vec{V}_{2} are not unique!
But they satisfy $(A-\lambda I) \vec{V}_{2}=\vec{V}_{1}$

Example 2 (λ with multiplicity 2 , and λ is defective)
Find the general solution of the system in the following problem. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
1 & -4 \tag{8}\\
4 & 9
\end{array}\right] \mathbf{x}
$$

ANS: Find the eigenvalues of A

$$
\begin{aligned}
0=|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & -4 \\
4 & 9-\lambda
\end{array}\right|=(1-\lambda)(9-\lambda)+16 & =\lambda^{2}-10 \lambda+25 \\
& =(\lambda-5)^{2}=0
\end{aligned}
$$

$\Rightarrow \lambda=5$ with multiplicity 2 .

$$
(A-5 I) \vec{v}=\overrightarrow{0}=\left[\begin{array}{rr}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow a+b=0 \Rightarrow a=-b
$$

The eigenvector corresponds to $\lambda=5$ is a multiple of $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ Thus λ has multiplicity 2 but only has one linearly independent eigenvector.
We apply the above algorithm to find \vec{v}_{2} and \vec{v}_{1}.
We solve

$$
\begin{aligned}
\overrightarrow{0}=(A-5 I)^{2} \vec{V}_{2} & =\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

So any a, b satisfy this equation.
Let's choose $a=1, b=0$. Then $\vec{V}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
We compute

$$
(A-5 I) \vec{V}_{2}=\vec{V}_{1} \Rightarrow\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-4 \\
4
\end{array}\right] \triangleq \vec{V}_{1}
$$

Note \vec{V}, is an eigenvector for $\lambda=5$.
We have

$$
\begin{aligned}
& \text { ave } \left.\begin{array}{rl}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t}=\left[\begin{array}{c}
-4 \\
4
\end{array}\right] e^{5 t} \\
\\
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{5 t}=\left(\left[\begin{array}{c}
-4 t \\
4 t
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) e^{5 t} \\
\text { Then the general solution }
\end{array}=-470 \text {-4t }+1\right]
\end{aligned}
$$

$$
\vec{x}(t)=c_{1}\left[\begin{array}{c}
-4 \\
4
\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}
-4 t+1 \\
4 t
\end{array}\right] e^{5-t}
$$

Remark (4): Note \vec{v}_{1} and \vec{v}_{2} are not unique but related.
Remarks: Then the general solution
by $(A-\lambda I) \vec{V}_{2}=\vec{V}_{1}$. For example, given $\vec{V}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
we should find \vec{r}_{2} sit.

$$
\begin{aligned}
& [x, y]=\text { meshgrid(}-3: 0.3: 3,-3: 0.3: 3) \text {; } \\
& \mathrm{f} 1=\mathrm{x}-4 * \mathrm{y} \text {; } \\
& f 2=4 * x+9 * y ; \\
& \text { quiver(} x, y, f 1, f 2) \\
& (A-5 I) \vec{r}_{2}=\vec{v}_{1} \Rightarrow\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Let $b=0$, then

$$
a=1 / 4 .
$$

\vec{V}_{2} can be $\left[\begin{array}{l}\frac{1}{4} \\ 0\end{array}\right]$

Example 3 . (λ with multiplicity 2 , and λ is defective)

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-2 & 1 \tag{9}\\
-1 & -4
\end{array}\right] \mathbf{x}
$$

Ans: Find the eigenvalues of A :

$$
0=|A-\lambda I|=\left|\begin{array}{cc}
-2-\lambda & 1 \\
-1 & -4-\lambda
\end{array}\right|=(\lambda+2)(\lambda+4)+1=\lambda^{2}+6 \lambda+9=(\lambda+3)^{2}=0
$$

$\Rightarrow \lambda=-3$ is an eigenvalue of A with multiplicity?.
Check if $\lambda=-3$ is defective.

$$
(A-\lambda I) \vec{v}=\overrightarrow{0} \Rightarrow\left[\begin{array}{cc}
-2+3 & 1 \\
-1 & -4+3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\Rightarrow a+b=0$. Any eigenvector corresponds to $\lambda=-3$ is a multiple of $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
So $\lambda=-3$ is defective.
We apply the algorithm to find \vec{v}_{2} and \vec{v}_{1}
We solve

$$
\begin{aligned}
& (A-\lambda I)^{2} \vec{V}_{2}=\stackrel{\rightharpoonup}{0} \\
\Rightarrow & {\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

We can choose $a=1, b=0$. and let $\vec{V}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
We compute

$$
\begin{aligned}
& (A-\lambda I) \vec{V}_{2}=\vec{V}_{1} \\
\Rightarrow & {\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \triangleq \vec{V}_{1} }
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \vec{x}_{1}(t)=\vec{V}_{1} e^{-3 t} \\
& \vec{x}_{2}(t)=\left(\vec{V}_{1} t+\vec{V}_{2}\right) e^{-3 t}
\end{aligned}
$$

The general solution is

$$
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-3 t}+c_{2}\left[\begin{array}{c}
t+1 \\
-t
\end{array}\right] e^{-3 t}
$$

Exercise 4 Find the general solution of the system in the following problem.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
0 & 1 & 2 \tag{10}\\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right] \mathbf{x}
$$

The solution can be found on page 341, Example 4.

