5.5 Multiple Eigenvalue Solutions

In this section we discuss the situation when the characteristic equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{1}$$

does not have n distinct roots, and thus has at least one repeated root.

An eigenvalue is of **multiplicity** k if it is a k-fold root of Eq. (1).

1. Complete Eigenvalues

- We call an eigenvalue of multiplicity *k* **complete** if it has *k* linearly independent associated eigenvectors.
- If every eigenvalue of the matrix **A** is complete, then because eigenvectors associated with different eigenvalues are linearly independent-it follows that **A** does have a complete set of *n* linearly independent eigenvectors **v**₁, **v**₂,..., **v**_n associated with the eigenvalues λ₁, λ₂,..., λ_n (each repeated with its multiplicity).
- In this case a general solution of Eq. (1) is still given by the usual combination

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}$$

Example 1 (An example of a complete eigenvalue)

Find the general solution of the systems in the following problem.

$$\mathbf{x}' = \begin{bmatrix} 2 & 0 & 0 \\ -7 & 9 & 7 \\ 0 & 0 & 2 \end{bmatrix} \mathbf{x}$$
(1)

ANS: The characteristic equation of the coefficient matrix A is

$$|A - \lambda I| = egin{pmatrix} 2 - \lambda & 0 & 0 \ -7 & 9 - \lambda & 7 \ 0 & 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda) egin{pmatrix} 9 - \lambda & 7 \ 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2 (9 - \lambda) = 0$$

Thus $\lambda=2,2,9.$

• Case
$$\lambda_1 = 2$$
. We solve $(A - \lambda_1 I)\mathbf{v} = \mathbf{0}$.

That is,
$$(A - \lambda_1 I)\vec{v} = \begin{bmatrix} 0 & 0 & 0 \\ -7 & 7 & 7 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $\Rightarrow -a + b + c = 0$
 $\circ \quad \text{If } c = 0, -a + b = 0.$

We can take a=b=1. Then $\mathbf{v}_1=egin{bmatrix}1\\1\\0\end{bmatrix}$ is an eigenvector to $\lambda_1=2.$

• If b = 0, then -a + c = 0. We can take a = c = 1. Then $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is another eigenvector to $\lambda_1 = 2$.

Note \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

• Case $\lambda_2 = 9$. We solve

$$(A - 9I)\mathbf{v}_3 = \begin{bmatrix} -7 & 0 & 0 \\ -7 & 0 & 7 \\ 0 & 0 & -7 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(2)

$$\Rightarrow \begin{cases} a = 0\\ a + c = 0\\ c = 0 \end{cases}$$

Let $b = 1$. Then $\mathbf{v}_3 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$ is an eigenvector correction of $\mathbf{v}_3 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Let b = 1. Then $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is an eigenvector corresponds to $\lambda_2 = 9$.

Then the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1\\0\\1 \end{bmatrix} e^{2t} + c_3 \begin{bmatrix} 0\\1\\0 \end{bmatrix} e^{4t}$$
(3)

2. Defective Eigenvalues

(i.e. X has less than k. linearly

 $\int \lambda \vec{v}_{i} t e^{\pi t} = A \vec{v}_{i} t e^{\pi t}$ $\vec{v}_{i} e^{\pi t} + \lambda \vec{v}_{2} e^{\pi t} = A v_{2} e^{\pi t}$

- An eigenvalue λ of multiplicity k>1 is called **defective** if it is not complete. independent eigenvectors)
- If the eigenvalues of the n imes n matrix ${f A}$ are not all complete, then the eigenvalue method will produce fewer than the needed n linearly independent solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- An example of this is the following **Example 2**.
- The defective eigenvalue $\lambda_1=5$ in Example 2 has multiplicity k=2 , but it has only 1 associated eigenvector.

The Case of Multiplicity k=2

Remark: The method of finding the solutions is summarized in the **Algorithm Defective Multiplicity 2 Eigenvalues**. The following steps explain why this algorithm works.

- Let us consider the case k = 2, and suppose that we have found (as in Example 2) that there is only a single eigenvector \mathbf{v}_1 associated with the defective eigenvalue λ .
- Then at this point we have found only the single solution $\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda t}$ of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Recall when solving ax'' + bx' + cx = 0. If $ar^2 + br + c = 0$ has repeated roots. Then two linearly independent solutions are e^{rt} , te^{rt}

• By analogy with the case of a repeated characteristic root for a single linear differential equation, we might hope to find a second solution of the form

$$\mathbf{x}_2(t) = (\mathbf{v}_2 t)e^{\lambda t} = \mathbf{v}_2 t e^{\lambda t}$$

• When we substitute $\mathbf{x} = \mathbf{v}_2 t e^{\lambda t}$ in $\mathbf{x}' = \mathbf{A} \mathbf{x},$ we get the equation

$$\mathbf{v}_2 e^{\lambda t} + \lambda \mathbf{v}_2 t e^{\lambda t} = \mathbf{A} \mathbf{v}_2 t e^{\lambda t}$$

- But because the coefficients of both $e^{\lambda t}$ and $te^{\lambda t}$ must balance, it follows that ${f v}_2={f 0},$ and hence that $\mathbf{x}_2(t) \equiv \mathbf{0}.$
- This means that contrary to our hope the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ does not have a nontrivial solution of the form we assumed.
- Let us extend our idea slightly and replace $\mathbf{v}_2 t$ with $\mathbf{v}_1 t + \mathbf{v}_2$.
- Thus we explore the possibility of a second solution of the form

$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2) e^{\lambda t} = \mathbf{v}_1 t e^{\lambda t} + \mathbf{v}_2 e^{\lambda t}$$

where \mathbf{v}_1 and \mathbf{v}_2 are nonzero constant vectors.

• When we substitute $\mathbf{x} = \mathbf{v}_1 t e^{\lambda t} + \mathbf{v}_2 e^{\lambda t}$ in $\mathbf{x}' = \mathbf{A}\mathbf{x}$, we get the equation

$$\mathbf{v}_{1}e^{\lambda t} + \underline{\lambda \mathbf{v}_{1}t}e^{\lambda t} + \underline{\lambda \mathbf{v}_{2}}e^{\lambda t} = \underline{\mathbf{A}\mathbf{v}_{1}t}e^{\lambda t} + \underline{\mathbf{A}\mathbf{v}_{2}}e^{\lambda t}$$

and $te^{\lambda t}$ here, and thereby obtain the two equations
$$\mathbf{v}_{-\lambda}\mathbf{I})\mathbf{v}_{1} = \mathbf{0} \quad \text{and} \quad (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{2} = \mathbf{v}_{1}$$

ust satisfy in order for
$$(t) = (\mathbf{v}_{1}t + \mathbf{v}_{2})e^{\lambda t} = \mathbf{v}_{1}te^{\lambda t} + \mathbf{v}_{2}e^{\lambda t}$$
$$(A - \lambda \mathbf{I})\vec{v}_{1} = \vec{0}$$
$$(A - \lambda \mathbf{I})\vec{v}_{1} = \vec{v}_{1}$$

• We equate coefficients of $e^{\lambda t}$ and $te^{\lambda t}$ here, and thereby obtain the two equations

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_1 = \mathbf{0}$$
 and $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_2 = \mathbf{v}_1$

that the vectors \mathbf{v}_1 and \mathbf{v}_2 must satisfy in order for

$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2) e^{\lambda t} = \mathbf{v}_1 t e^{\lambda t} + \mathbf{v}_2 e^{\lambda t}$$

to give a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

- Note that the first of these two equations merely confirms that v_1 is an eigenvector of A associated with the eigenvalue λ .
- Then the second equation says that the vector \mathbf{v}_2 satisfies

$$(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = (\mathbf{A} - \lambda \mathbf{I}) \left[(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v}_2 \right] = (\mathbf{A} - \lambda \mathbf{I}) \mathbf{v}_1 = \mathbf{0}$$

• It follows that, in order to solve the two equations simultaneously, it suffices to find a solution \mathbf{v}_2 of the single equation $(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0}$ such that the resulting vector $\mathbf{v}_1 = (\mathbf{A} - \lambda \mathbf{I}) \mathbf{v}_2$ is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues

1. First find nonzero solution ${f v}_2$ of the equation

$$(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0} \tag{4}$$

such that

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_2 = \mathbf{v}_1 \tag{5}$$

is nonzero, and therefore is an eigenvector \mathbf{v}_1 associated with λ .

2. Then form the two independent solutions

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda t} \tag{6}$$

and

$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2)e^{\lambda t} \tag{7}$$

of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ corresponding to λ .

Example 2 (λ with multiplicity 2 , and λ is defective)

· We compute

Find the general solution of the system in the following problem. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system.

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & 9 \end{bmatrix} \mathbf{x}$$
(8)
ANS: Find the eigenvalues of A

$$0 = [A - \lambda \mathbf{I}] = \begin{bmatrix} 1 - \lambda & -4 \\ 4 & 9 - \lambda \end{bmatrix} = (1 - \lambda)(9 - \lambda) + 16 = \lambda^{2} - 10\lambda + 25$$

$$= (\lambda - 5)^{2} = 0$$

$$\Rightarrow \lambda = 5 \text{ with multiplicity } 2.$$

$$(A - 5\mathbf{I}) \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{0}} = \begin{bmatrix} -4 & -4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow a + b = 0 \Rightarrow a = -b$$
The eigenvector corresponds to $\lambda = 5$ is a multiple
of $\overrightarrow{\mathbf{v}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ Thus λ has multiplicity 2 but only has one
linearly independent eigenvector.
We apply the above algorithm to find $\overrightarrow{\mathbf{v}}_{2}$ and $\overrightarrow{\mathbf{v}}_{1}$.
We solve

$$\overrightarrow{\mathbf{0}} = (A - 5\mathbf{I})^{2} \overrightarrow{\mathbf{v}}_{2} = \begin{bmatrix} -4 & -4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} -4 & -4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
So any $a \cdot b$ satisfy this equation.
Let's choose $a = 1$, $b = 0$. Then $\overrightarrow{\mathbf{v}}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$(A \cdot SI) \overrightarrow{V_{1}} = \overrightarrow{V_{1}} \implies \begin{bmatrix} -4 & -4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ 4 \end{bmatrix} \stackrel{4}{=} \overrightarrow{V_{1}}$$
Nole $\overrightarrow{V_{1}}$ is On eigenvector for $\lambda = S$.
We have $\overrightarrow{X_{1}}(t) = \overrightarrow{V_{1}} e^{\lambda T} = \begin{bmatrix} -9 \\ 4 \end{bmatrix} e^{St}$
 $\overrightarrow{X_{2}}(t) = (\overrightarrow{V_{1}} + \overrightarrow{V_{2}})e^{St} = (\begin{bmatrix} -4t \\ 4t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix})e^{St}$
Remarks: Then the generic 1 solution $\overrightarrow{X_{1}}(t) = C_{1} \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{St} + C_{2} \begin{bmatrix} -4t + 1 \\ 4t \end{bmatrix} e^{St}$
Remark (\cancel{P}) : Note $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$ are not unique but related.
by $[(A - \lambda I) \overrightarrow{V_{2}} = \overrightarrow{V_{1}}]$. For example, given $\overrightarrow{V_{1}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
in Matab, we use $(A - \lambda I) \overrightarrow{V_{2}} = \overrightarrow{V_{1}}]$. For example, $\overrightarrow{Y_{1}} = \sum \begin{bmatrix} -4 \\ -4 \end{bmatrix} \begin{bmatrix} -4 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
 $\stackrel{1}{=} x - 4^{-y} = \frac{4}{2} = 4^{-y} + 9^{-y} = \frac{4}{2} = 4^{-y} = \frac{4}{2} =$

Example 3 . (λ with multiplicity 2 , and λ is defective)

$$\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ -1 & -4 \end{bmatrix} \mathbf{x}$$
(9)
ANS: Find the eigenvalues of A:

$$\mathbf{0} = |A \cdot \lambda \mathbf{I}| = \begin{bmatrix} -2 \cdot \lambda & 1 \\ -1 & -4 \cdot \lambda \end{bmatrix} = (\lambda + 2)[\lambda + 4] + 1 = \lambda^{2} + 6\lambda + 9 = (\lambda + 3)^{2} = 0$$

$$= \lambda = -3 \text{ is an eigenvalue of } A \text{ with multiplicity } 2.$$

$$(A - \lambda \mathbf{I}) \cdot \mathbf{v} = \vec{0} \Rightarrow \begin{bmatrix} -2 + 3 & 1 \\ -1 & -4 + 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \alpha + b = 0. \text{ Any eigenvector corresponds to } \lambda = -3 \text{ is}$$

$$\alpha \text{ multiple of } = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
So $\lambda = -3 \text{ is clefetive.}$
We apply the algorithm to find \vec{V}_{2} and \vec{V}_{1}
We solve
$$(A - \lambda \mathbf{I})^{2} \cdot \vec{V}_{2} = \vec{0}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
We can choose $a = 1$, $b = 0$, and $(b \neq \vec{V}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
We compute

$$(A - \lambda I)\vec{v_{s}} = \vec{v_{1}}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \stackrel{=}{=} \vec{v_{1}}$$
So we have
$$\vec{x_{1}}(t) = \vec{v_{1}}e^{-3t}$$

$$\vec{x_{2}}(t) = (\vec{v_{1}}t + \vec{v_{2}})e^{-3t}$$
The general solution is
$$\vec{x}(t) = c_{1}\vec{x_{1}}(t) + (c_{2}\vec{x_{1}}(t)) = c_{1}\begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-5t} + c_{1}\begin{bmatrix} t+1 \\ -t \end{bmatrix} e^{-3t}$$

Exercise 4 Find the general solution of the system in the following problem.

$$\mathbf{x}' = \begin{bmatrix} 0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$
(10)

The solution can be found on page 341, Example 4.